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Abstract. A method is presented for attempting global minimization for a function of continuous 
variables subject to constraints. The method, called Adaptive Simulated Annealing (ASA), is distin- 
guished by the fact that the fixed temperature schedules and step generation routines that characterize 
other implementations are here replaced by heuristic-based methods that effectively eliminate the 
dependence of the algorithm's overall performance on user-specified control parameters. A parailel- 
processing version of ASA that gives increased efficiency is presented and applied to two standard 
problems for illustration and comparison. 
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1. Introduction 

The numerical optimization method known as simulated annealing was proposed 
by Kirkpatrick et al. [8] and by Ceru~ [2] for attempting the solution of combina- 
torial optimization problems. It is based upon a method developed by Metropolis 
et al. [9] for equation-of-state calculations for systems of interacting particles. Van- 
derbilt and Louie (1984) generalized the algorithm to the optimization of functions 
of continuous variables. 1 Several variants of annealing have since been developed 
(e.g., [13], [1], [3]); these methods typically require the user to specify values for a 
variety of input parameters that are specific to the problem at hand and must gen- 
erally be found by trial and error. The performance of these algorithms generally 
depends sensitively upon the values of these control parameters, and the results 
presented are typically best-case performance. As a result, much of the true cost of 
the computation is effectively hidden. 

The Adaptive SimulatedAnnealing (ASA) algorithm presented here attempts the 
location of the global minimum of an objective function, f (x) ,  of N continuous 
variables x = ( x t , . . . ,  XN) within a region of interest f~ that is bounded by 
J inequality constraints qj(x) > 0, j = 1 , . . . ,  J.  The goal in the design of 
ASA is to eliminate the hand-picked, problem-specific parameters while retaining 
a performance that, at least, rivals the best-case efficiency of other variants of 
simulated annealing. That is, the goal is to avoid hidden costs. 

* This research was supported by the University Research Initiative of the U.S. Army Research 
Office. 
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Superficially, the annealing algorithm is simple. First, an initial value for the 
acceptance parameter/3 is chosen (/3 is the reciprocal of what is called the temper- 
ature in some variants of annealing). Next, a starting point is chosen as the initial 
base point xb,and fb is initialized: fb = f(xb). Annealing then consists of the cyclic 
repetition of the following operations until a termination criterion is satisfied: 

1. Generation and Evaluation: A random step s is selected from a distribution 
called the generator to form the trial point xt = xb + s, and the objective 
function is evaluated at xt, yielding ft = f(xt) .  

2. Examination: If ft < fb the trial point is accepted (i.e. Xb and fb are set equal 
to xt and ft, respectively). If ft >1 fb the trial point is accepted with probability 
e--~(Yt--.fb). 

3. Parameter updating: The values of/3 and the parameters that control the 
generator are all updated. 

Annealing is a pseudo-random process that can be modelled by using three 
entities: first, the occupation density pi(x) is defined such that pi(x) dV~ is the 
probability that the base point after iteration i is located within the volume element 
dVx at the position x. The generator 9(Y, x; 9 )  is defined such that g(Y, x; 9 )  dV v 
is the probability that a step is generated to a trial point within the volume element 
dV u at y, given that the base point is x. Here, 9 represents a set of parameters 
that determines the form of the generator. Finally, the acceptor a(y, x;/3) gives the 
probability of accepting the move from x to y:2 

a(y, x;/3) = e -;~ max[f(y)-y(x),0] (1) 

With these entities, a single cycle of the annealing process can be modelled as 

Pi+l(X) = pi(x) + fo[Pi(y)a(x'Y;/3)g(x'Y; gJ) 

-p i (x)a(y ,  x;/3)g(y, x; 9)] dVy, (2) 

where f~  denotes integration over the entire region of interest. 
Since the annealing process is a discrete-time, continuous-space Markov pro- 

cess, the occupation density approaches an equilibrium density 7r(x;/3, 9) .  3 That 
is, provided that/3 and g~ are held fixed, 4 in the limit of large i, and regardless of the 
form ofp0(x), the occupation density pi(x) approaches 7r(x;/3, 9) .  The equilibrium 
density can be determined by first setting Pi+l = Pi = 7r in equation (2): 

0 = fo  [K(y;/3, ~)a(x,  y;/3)g(x, y; kO) 

-Tr(x;/3, ~)a(y,  x;/3)g(y, x; kg)] dVy. (3) 

When the generator is symmetric [i.e. g(y, x; 9 )  = g(x, y; 9)], the equilibrium 
distribution is independent of k~ and can be found by using the condition of detailed 
balance. 5 

7r(x;/3) = a(/3)e -;~f(x), (4) 
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where a(/3) is simply a normalization factor. That is, a(/3) is given by 

a(/3) = [ f  e-~'(Y) dV~] -~ (5) 

It follows that locating the global minimum of f with certainty corresponds to 
attaining equilibrium for/3 = c~ - an impossibility given only a finite number 
of iterations. The goal then is to realize a density that is sufficiently "close" to 
equilibrium for a sufficiently large value of/3. 

In general, a quasi-equilibrium density for large/3 cannot be attained efficiently 
simply by fixing/3 at that large value from the outset. This is impractical because 
equilibration is then unworkably slow, and a significant fraction of the occupation 
density becomes "trapped" in various local minima. The strategy, therefore, is to 
begin the annealing process with/3 much less than its final value, so that quasi- 
equilibrium may be attained relatively quickly (in ASA,/3 is initially set to zero 
so that the equilibrium density is initially uniform);/3 is then raised gradually 
while quasi-equilibrium conditions are maintained. The sequence of values of 
/3 used during the process - called the annealing schedule - is one of the two 
principal components that determine the algorithm's efficiency. If/3 is raised too 
quickly, the process is driven far from equilibrium: a significant portion of the 
occupation density becomes effectively trapped within the local minima. If/3 is 
raised too slowly, an excessively large number of iterations is required to reach a 
value of/3 that is sufficiently large to give adequate concentration about the global 
minimum. 

Many variants of simulated annealing proceed according to a fixed, ad hoc 
annealing schedule (e.g., set/3i = /31 ln(1 + i ) / ln (2) ,  where i is the iteration 
number and/31 is a problem-specific parameter). Sometimes the generator is also 
fixed. Instead of fixing the forms of the annealing schedule and the generator, ASA 
is designed according to the following heuristic: 

Raise/3 as quickly as possible while attempting to keep the occupation density 
within a specified distance of the current equilibrium density. 

One measure of the distance between two occupation densities is defined in Section 
2.2. For a typical problem, it can be expected that it is possible to raise/3 relatively 
quickly during certain stages of the annealing process without straying too far from 
equilibrium. 

In ASA, ad hoc annealing schedules and generators are replaced by methods that 
are based upon statistical analyses of the process up to the current iteration. Since the 
past behavior of the process is considered, it becomes non-Markov and conventional 
equilibration is no longer assured; in fact, it would be possible for such "feedback" 
to cause collapse or stagnation. By careful design, however, it is possible to maintain 
approximate validity for equation (4). The conceptual foundations for the adaptive 
control of/3 and �9 in ASA are presented in Section 2. This treatment is divided into 
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subsections that relate to equilibration measures, step generation, and the annealing 
schedule. The more detailed ideas related to the algorithm's implementation are 
considered in Section 3, along with modifications that parallelize the process. The 
paper ends with empirical comparisons and concluding remarks. 

2.  T h e  A S A  P r o c e s s  

In most applications of optimization algorithms, the time spent on evaluating 
the objective function dominates all other aspects of the computation. Efficiency is 
therefore defined by reference to the number of function evaluations, and it turns out 
that the efficiency of an adaptive simulated annealing algorithm can be enhanced by 
using parallel processing. One convenient parallel processing arrangement for ASA 
comprises a single master processor and K peripheral processors. During each 
iteration, each peripheral processor simultaneously generates an independent step 
from a distribution that is identical to that used by the other peripheral processors 
(that is, �9 and Xb are identical for all peripheral processors, but their pseudo- 
random number generators are seeded independently). Each peripheral processor 
then evaluates the objective function at its generated trial point and sends the results 
(the trial point and the objective function value) to the master processor. 6 

Figure 1 presents a flowchart of the parallelized annealing process. Notice that 
the K trial points are generated and evaluated in parallel, but examined sequentially 
by the master processor. During each iteration, the master processor examines trial 
points until one of two events occurs: one of the trial points is accepted, or all 
K trial points have been rejected. The definitions of the occupation density and 
the equilibrium density given above need no modification when the trial points are 
examined in this manner. Notice also that, for K = 1, the parallel annealing process 
is identical to the single-processing case.' In fact, the algorithm can be implemented 
on a single processor where, during each iteration, not one but K steps are generated 
- any gain in efficiency is then due to the more accurate statistics. Sections 2. l, 2.2, 
and 2.3 present the methods by which step generation and control of/3 are made 
adaptive. In each section, these methods are developed for the case K = 1. 

2.1. EQUILIBRATION MEASURES 

Although the equilibrium density 7r(x;/3) is independent of the generator, the gen- 
erator is crucial in determining the rate at which the occupation density approaches 
K(x;/3). The generator is here designed to maximize the rate of equilibration. The 
rate of equilibration is defined as the rate of decrease of a scalar measure of the 
distance between the current occupation density Pi (x) and the equilibrium density 
corresponding to the current value of/3, 7r(x; fli). The distance, D [p', p"], between 
two occupation densities p' and p" is taken to be 

1 
D [ p ' , p " ]  - Ip ' (y)  - p " ( y ) l  d y e .  (6) 
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Fig. 1. Flowchart of the parallel simulated annealing process. 

Update fl and r~. 

t 
Accept ~b fb *-- ft/r *-- move::gt,k I 

If p' and p" are identical, D [p', p"] is zero; if they do not overlap at all, D [p', p"] is 
unity. 7 

A measure of the rate at which a process at equilibrium re-equilibrates after the 
perturbation caused by a change in 3 may now be defined. Consider an annealing 
process that is at equilibrium with the acceptance parameter equal to 3 after iteration 
i, i.e. pi(x) = 7r(x; 3).  If the acceptance parameter is raised before iteration i q- 1 
to 3 + A3 ,  the process is no longer at equilibrium, but at a distance D]  = 
D[pi, 7r(3 + A3)] from equilibrium. After iteration i + 1, the occupation density 
pi+l(X) follows from equation (2) and the distance to equilibrium is reduced to 
Di+ 1 = D [pi+ 1, K(3 + A3)].  The ratio of the distances to equilibrium before and 
after iteration i + 1, Di+I /D] ,  is a measure of the rate of re-equilibration. The 
reduction Tg ~ is defined as the limit of  this ratio as A 3 --+ 0: 

R'(3, ~) = lim D[pi+I, 7:(3 + A3)] 
h3-*O D[pi,K(3 + A3)] ' (7) 
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where, recall, pi(x) = 7r(x;/3). The complement of the reduction, 1 - R',  is adopted 
as the measure of the rate at which the process is approaching equilibrium. That is, 
the equilibrium rate R is defined by 

R(f l ,  ~ )  - 1 - R'(/3, ~) .  (8) 

The form of pi+l(X) is found by taking pi(x) = K(x;/3) in equation (2): 

K(Y;/33) + fo[K(x; f)a(y,  x; f + A/3)g(y, x; ~) Pi+I(Y) 

-K(y;/3)a(x, y;/3 + A/3)g(x, y; ~)] dVy. (9) 

Since the limit A/3 ~ 0 is being considered, it is sufficient to approximate to first 
order in A/3, and the acceptor defined in equation (1) is then found to satisfy 

a(x,y;/3 + Aft) ~ a(x,y; f){1 - Aft max[f(x) - f(y),0]}. (10) 

Similarly, the new equilibrium density is given by 

~_(x;/3 + ~',/3) = ~(/3 +/x/3)~-(~+A~)s(x) 

K(x; fl){1 - A/3[f(x) - f(/3)]), (11) 

where 7(/3) is the mean value of f at equilibrium with acceptance parameter/3: 

7(/3) - f~ f(x)~'(x;/3)dVx. (12) 

Since g(x, y; if1) = g(y, x; ~) and r_(x;/3)a(y, x;/3) = ~-(y;/3)a(x, y,/3), it follows 
that the equilibration rate satisfies 

R(/3,~) = 1 -  lim 
A~-+0 

A/3 {fa ~r(y;/3)If(y) - 7(/3) + F(y;/3, ~)[ dVy + O(A/3)} 

A/3 {fa ~-(y;/3)lf(y ) - 7(/3)1 dV u + O(A/3)} 

1 fa 
= 1 - S(/3---) ~-(Y;/3)If(Y) - 7(/3) + F(y;/3~)1 dVy. (13) 

In equation (13), F(y;/3, ~) is defined by 

/3, ~ )  - f a [ f ( x  ) - f (y) ]a(x ,  y;/3)g(x, y; ~)  dVx, (14) F(y; 

and corresponds to the expected change in f when attempting a move from base 
point y, and the sensitivity S(/3) is defined by 

S(/3) - f K(Y;/3)If(y)- 7(/3)1 dVy. (15) 
J ~  
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The sensitivity is a measure of the effect of a perturbation of the acceptance 
parameter: 

D[Tr(3 , :r(3 + Aft)] = A 3 S ( 3 )  + O((A/3)2), (16) 

and the equilibration rate is a measure of the rate of"recovery." 
In this definition of the equilibration rate, it is assumed that the process is 

initially at equilibrium [i.e. p~(x) = ~(x;/3)]. Although this is unrealistic, a more 
accurate model of the behavior of the annealing process can be developed by 
introducing the concept of trajectories in the infinite-dimensional state space of 
occupation densities, as depicted in Figure 2. The equilibrium trajectory for an 
annealing process consists of the path on which the process would pass if it were 
kept at equilibrium at each stage - that is, if 3 were raised infinitely slowly. The 
actual trajectory, for which/3 is not raised infinitely slowly, consists of the sequence 
of points in this state space through which the process actually passes. Since the 
value of 3 is slowly and continually increasing, it seems reasonable to assume - at 
least locally - that (i) the equilibrium trajectory can be approximated linearly, as in 
equation (11), and (ii) that the actual trajectory and the equilibrium trajectory are 
roughly collinear: 

Pi(Y) - E(Y;fl + A3)  ~ 7[E(Y;/3) - 7r(y;/3 + A/3)], (17) 

for all y and for some value of the constant 7. From equation (1 i) it now follows 
that 

pi(y) - r_(y; fl + Aft) ~ 7A/3r__(y; 3){f(Y) - f ( 3 ) } ,  (18) 

and, from equations (9) and (10), it follows that 

Pi+I(Y) - 7r(y;3 + A/3) ,.~ 7AfTr(y; /3){f(y)  - -f(/3) + F(y;/3, ~)}.  (19) 

With this more realistic model, the reduction in the distance to equilibrium per 
examination is now seen to be identical to the earlier result what was derived more 
simplistically. 

2.2. STEP GENERATION 

The generator's parameter set is here chosen to maximize the equilibration rate. 
Since it seems impractical to design a generator that truly maximizes R for an 
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arbitrary objective function and for all/3, it is appropriate to adopt a certain param- 
eterized form for g and to choose values for the parameter set �9 that are consistent 
with the criterion of maximizing R. We have chosen a Gaussian form for g because 
it is fairly simple to implement an approximately Gaussian generator. The general 
form of a Gaussian generator with positive-definite covariance matrix C is 

g(y, x; C) = 1 e -  l ( y - x ) ' C - l ( y - x )  . (20) 

7(27rlN detC 

In this case, the generator's parameter set �9 consists of the elements of C. 

2.2.1. Simple quadratic model 

In the adaptive updating of the control parameters (/3 and ~), ASA depends upon 
the statistical estimation of several quantities. A simple appreciation of the behavior 
of the simulated annealing process follows upon an analytical calculation of the 
dependence of various statistics upon the control parameters for an N-dimensional 
unconstrained quadratic objective function: 

N 
2 (21)  N(x) = --  x . x ,  

/=1 

and an isotropic Gaussian generator. Since, by design, the behavior of ASA is 
invariant under linear transformations of both the objective function and the coor- 
dinates, the results derived here are valid for a general unconstrained positive- 
definite quadratic provided the Gaussian generator is chosen in the only consistent 
fashion: its covariance matrix must be proportional to the inverse Hessian matrix 
of the quadratic. This analysis provides approximate values for many of the control 
parameters. 

Since the quadratic is unimodal, it is of little practical value as a test case for 
global minimization. However, over the accessible domain at a given value of/3, a 
typical objective function may often be approximated coarsely by a quadratic. This 
model provides analytical results that approximate the behavior of the annealing 
process and provide a measure of the dependence of the algorithm's performance 
upon dimensionality. It is convenient here to relate the radial variance of the 
generator, say 0-2, to the radial variance of the equilibrium density, a~(/3), by using 
the relative step size #:8 

0 -2 #20.7(/3 ) #2 f~o r2e-~3rZrN-1 dr #2 
= N = N f~o e_flr2rN_l dr = 2--~ (22)  

so that the generator can be written as 

( N/3 ~ N/2 e_N/3S.S//z2" (23) 
g(x + s ,x ;# )  = tT-h-S/ 
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In this case, the generator parameter set �9 contains only one member: the relative 
step size #. In the following analysis, it is convenient to consider the inverse of the 
covariance matrix of the recently accepted steps as a provisional, relative metric for 
the coordinate space. In this way, at any fixed value of/3, it becomes meaningful to 
speak of relatively "large" and "small" steps. In general, the metric form changes 
with/3 although, due to the invariance of ASA under scale transformations, the 
form of this metric is essentially fixed in the case of the quadratic. 

Entities evaluated for the N-dimensional quadratic are written here with hats 

(^) and carry a subscripted N. So, for example, fN is found to satisfy 

N 
fN(/3) = Jr2 fN(X)#N(X;/3) dgx = ~ ,  (24) 

and SN is given by 

(25) 

The integrals here are evaluated by adopting N-dimensional spherical pol~ coor- 
dinates, and the same can be done to find a simplified expression for RN. As 
shown in the Appendix, RN is independent of/3 and is written here as /~N(#), 
and this function is plotted in Figure 3 for several values of N. For each value 
of N, /~N approaches zero as # ~ 0 - smaller steps, although very likely to be 
accepted, do not allow rapid equilibration. The equilibration rate also approaches 
zero as # --+ er - larger steps are nearly always rejected, and also give slow 
equilibration. For each value of N, there is a value of #, #opt(N), that maximizes 

f~N. RN(#opt(N)) and #opt(N) are shown in Figure 4 for a range of values of N. 
It is at # = #opt(N) that the step size is small enough to allow acceptance of a 
sufficiently large fraction of attempted moves, yet large enough that the accepted 
moves produce significant progress toward equilibrium. Notice that the maximum 
equilibration rate, RN(#opt( N) ), is a decreasing function of N and that the factor 
of N introduced into the definition of # is responsible for the fact that #opt(N) is 
roughly constant for large N. 

This analysis of the significance of step sizes in N dimensions provides a 
foundation for applying our heuristic in the step generation component of ASA. 
However, for objective functions containing anisotropic "valleys" that may not be 
aligned with the coordinate axes, a simple isotropic Gaussian generator (with C 
equal to a scalar multiple of the identity matrix) gives relatively slow equilibration; 
when optimally balanced in this form, steps in some directions are generally too 
short, while in other directions the steps are generally too long. Furthermore, as/3 
increases during the annealing process, the characteristic widths and the orienta- 
tions of the principal axes of the "valleys" to which the generator must conform 
may undergo significant change. The generator must adapt to such variations. 



10 A. E, W, JONES AND G. W. FORBES 

0.6 

0. 

( ~  0.3 

0.2 

0.0 ' f 

0.0 0.5 1.0 1.5 2.0 2.5 

Equil ibrat ion rate vs .  relative step size for the  quadratic.  Fig. 3. 

~ N = I  
~ N = 3  
~ N = 9  
- -  N = 2 7  

1 p 

3.0 

2.0 -- - 0.4 

1.9 

~ 1.8 

1.7 

0.3 

o.2 ~ 

0.1 
1o  

1,5 i 0.0 

5 I0 15 20 25 30 35 
N 

Fig. 4. Opt imal  relative step size and  m a x i m u m  equilibration rate vs. d imens iona l i ty  for the  
quadratic.  

2.2.2. Archives and expansion factor 

It is possible to create a generator that approximates an N-dimensional Gaussian 
distribution with an appropriate covafiance matrix by forming a randomly-weighted 
sum of several previously accepted steps: 

M 

P ~ w ~ r ~ .  (26) 
S - -  ~ m = l  

The set {r,~ : m = 1, 2 , . . . ,  M}  contains the M most recently accepted steps 
stored as a first-in-first-out queue referred to here as the archives; M is the archive 
size. The w's are independent pseudo-random numbers from a distribution with 
zero mean and unit variance. Since, according to the Central Limit Theorem, as 
M ~ co, the generated steps assume a Gaussian distribution that has a covariance 
equal to p2 times the covariance of the archives, p is called the expansion factor. By 
choosing M to be sufficiently large, i t  is possible to obtain a good approximation 
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to a Gaussian distribution. The archives are initially set equal to the differences 
between successive pairs of the elements of a set of M + 1 points chosen from a 
uniform random distribution over fL 

Since the steps are generated by forming a sum of previously accepted steps, it 
is important to examine the characteristics of the accepted steps. The simplest of 
such characteristics is the mean acceptance, ~(/3, 9), which is just the fraction of 
attempted moves accepted at equilibrium: 

~(/3, 9)  = f~ 0r(x;/3) Jf~ a(y, x;/3)9(Y, x, 9)dV v dVx. (27) 

The mean acceptance for the quadratic model is independent of/3 and, by again 
using N-dimensional spherical polar coordinates, is found to be given by 

sin ~3 COS ~ E ~  2i !!,, sin2i 
= (28) 

1 - c o s  r [1 + ~ 1 1  (~2~;!I !' sin 2i ~b] (even N), 

where r = t a n - l ( 2 v ~ / # ) .  Figure 5 shows aN(#) vs. # for several values of 
N. For smaller step sizes, aN is close to unity and larger values of # give values 
of aN that approach zero. aN(#opt(N)) is presented in Figure 6. For larger N, 
aN(Popt(N)) is about 0.36; that is, for high-dimensional problems, equilibration 
for a quadratic objective function and a Gaussian generator is most rapid by our 
measure when only about 36% of the generated steps are accepted. This value 
contrasts with the assumption made in the design of several other variants of 
simulated annealing that the majority of the generated steps should be accepted in 
order to maintain efficiency. 

Since the larger steps are generally more likely to be rejected, the accepted steps 
are typically "shorter" than the generated steps. To generate new steps that have a 
covariance that approximately maximizes R, the expansion factor p that appears 
in equation (26) must be taken to be greater than unity. Here, the expansion factor 
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is the ratio of the RMS generated step size e to the RMS accepted step size ~ra for 
the quadratic, where the accepted step size is defined by 

1 f O'2(/3~ IS) 7r(x; fl) 
-- ~ N ( ~ , , )  J~  

f a(y, x; x; - x) dV v (29) /3)g(y, #)(Y x)(y dVx. 

It turns out that the ratio of the generated step size to the accepted step size,/SN, 
is independent of/3 and is simply related to aN given in closed form in equation 
(28): 

or(/3'#) ~ #2 I aN(#) . (30) 

For small is, nearly all generated steps are accepted and therefore /gN is roughly 
unity. For larger #, few of the larger generated steps are accepted, hence/gN is 
significantly greater than unity. In ASA, p is taken to be equal to jN(ISopt(N)) as a 
first step in the attempt to ensure approximately the proper scale for the generated 
steps. Figure 6 also shows pN(#opt(N)) v s .  N; these values for p generate steps 
with approximately the correct covariance. 

2.2.3. Inflation and boost factors 

There are two other components to the adaptive step generation scheme in ASA. 
The first of these depends upon the archive size, M. Clearly, M must be at least 
N in order that the generated steps span the space. In fact, for the generated 
step distribution to be roughly Gaussian, it can be expected that M should be at 
least several times N. On the other hand, if M becomes too large step generation 
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becomes costly and, since the value of fl is changing, the archives may become 
largely "outdated". We have found that an archive size of 

[M ~ ION] (31) 

is generally appropriate. (A box is used here to distinguish any result that enters 
directly into the algorithm.) With any finite choice of M, the steps generated 
according to equation (26) tend to be "shorter" than optimal, due to the feedback: 
the "short" generated steps tend to be accepted and placed into the archives, causing 
subsequently generated steps also to be "shorter". It is therefore appropriate to 
introduce to the step generation process a compensating scale factor v, called the 
inflation factor: 

M 

S =  fl~M m~l ZOmrm (32) 

The optimal inflation factor for given N and M has been determined empirically 
by performing the annealing process on the unconstrained quadratic for fixed fl and 
with p = fiN(#opt(N)). The value of v is then adjusted to obtain approximately 
the desired statistics (i.e. g, <r, and cra). In this way, an appropriate value of the 
inflation factor is bound to be given by 

v(M, N)  ~ 1 + 0.5 - 0.3N -2 ] 
M/N " (33) 

J 

It is not essential to determine the optimal inflation factor precisely since a third, 
fine-scale mechanism is now proposed to complete the adaptive control of step 
size. 

Both the expansion factor and the inflation factor are based upon analysis of the 
quadratic model and are fixed during the ASA process. They provide approximately 
the proper scale between the generated steps and the accepted steps. In practice, 
however, these fixed parameters alone are not always adequate to maintain an 
efficient adaptive step generator, so an adaptive parameter ~, called the boost 
factor, is also introduced. The final prescription for step generation follows upon a 
slight modification of equation (32): 

pv~ M 
s = Z (34) 

Before it is archived, each previously accepted step rm is now divided by the value 
of the boost factor at the time that rm was generated, and the result is written here 
as _r~. This normalization ensures that all steps in the archives contribute roughly 
equally to the generation of new steps even when the boost is changing during the 
time needed for M steps to be accepted (the "archive turn-over time"). 
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This final component of the step generation scheme is necessary to ensure 
efficiency when the objective function is radically different from a quadratic over 
the region of exploration. Without this dynamic step-size factor, there are cases 
in which the step generation process may stagnate - nearly all steps are rejected. 
Although demand upon the boost factor control scheme is minimized by the choice 
of appropriate values for p and u, the control of ( is the most complicated part 
of ASA. Here, we first consider the adaptive control of ~ in a single-processing 
environment; this method is generalized for the parallel-processing environment 
in Section 3.1. 

The control of ~ follows upon examination of the statistics of the accepted 
moves. A simple scheme for controlling ( consists of examining g and adjusting 
after each iteration in order to keep ff within a specified tolerance of a target value, 
say aN (#opt (N)).  However, in ASA, ~ is controlled by examining the correlations 
between two statistics: (i) the mean local acceptance (i.e. the mean probability of 
accepting a move from the current base point), ?L, defined by 

/3, ~) - Ja a(y, x;/3)g(y, x; ~) dry, (35) ~(x; 

and (ii) the scaled deviation of f from f(/3), X, defined by 

X(x;/3) - f(x) - f(/3) (36) 
0.j(/3) 

Here, 0.i (/3) represents the standard deviation of f at equilibrium with acceptance 
parameter/3: 

0"/(/3)- ( ~ [ f ( x ) -  f(/3)]27r(X;/3) dVz} 1/2 . (37) 
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For the quadratic, O'f,N(/3 ) is equal to [N/(2/32)] 1/2. Figure 7 shows aN(X; ~) for 
a nine-dimensional quadratic and for several values of # (the plots are of similar 
form for other values of N). It is found that when the step size is close to optimal, 
this curve is approximately linear with a weak positive gradient for values of X that 
are within the predominant lobe of the equilibrium density (roughly IX] < 1). That 
is, when the step size is optimal, steps from the higher points are more likely to be 
accepted than are steps from the lower points - just the opposite of the situation 
when the step size is too small. This is a suggestive and useful observation. 

The relationship between fi and X may be approximated linearly in the form 

fi(x;/3, ~)  ~ ax(x;/3)  + g(/3, ~1), (38) 

where an appropriate value for the constant A can be determined by performing a 
least-squares fit: 

fa K(x;/3)X(x;/3)~(x;/3, ~)  dV~ - g(/3, ~)  fa 7r(x;/3)X(X;/3) dV~ 
A =  fa 9)x2(x; 5) 

x a - x a  
- _ _  ( 3 9 )  

X 2 
The ratio of A to ~ is written here as 

A(/3, ~)  
,(/3, tg) - g(fl,------~" (40) 

The value of r/depends sensitively upon the step size: as the step size increases, g 
decreases and A is found to increase (see Figure 7). It turns out that this ratio for 
the quadratic, ~)N, satisfies 

r (pv/(N+2)/N) 

F (-'N-~) P 4 ) " ]  (41) 

Figure 8 shows ~)N(#) vs. #, and Figure 9 shows r 
It is proposed that the boost factor be adjusted in order to maintain an approx- 

imately optimal value of r/. In ASA, A and g are estimated and ~ is adjusted in 
order to keep r 1 within a tolerance factor ~ (say about 0.8) of the target value from 
equation ( 4 1 ) :  

~](#opt(N)) (42) ~lN(#opt(N))~ < rl < 

For a typical objective function, it can be expected that, within the operating region, 
~1 is generally a monotonically increasing function of step size - raising the step 
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size typically lowers the mean acceptance ~ and gives and even greater reduction 
in the mean local acceptance 5 for points where the objective function is below the 
mean f(fl) .  Accordingly, after each iteration of the ASA process, ~/is estimated 
and the boost factor is adjusted as follows: 

~ { ~0 ~-, if~7 < r , 
+-- ~/0, i f~/> ~N(#opt(N))/6 (43) 

(,  otherwise 

where 0 is the boost change factor (0 > 1). Notice that ~ may increase only by 
a factor of 03. This feature prevents the process from raising ~ quickly when g is 
small. It is proposed here that the value of 0 be related to the expected change in 
/3 (discussed in Section 2.3), and this final detail is therefore discussed in Section 
3.2. 

2.2.4. Inequality constraints 

In most other variants of simulated annealing, inequality constraints are treated 
simplistically: if a generated trial point lies outside the region of interest, it is dis- 
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carded and the step generation process is repeated until a feasible point is obtained. 
In many problems it is imperative to consider more carefully the influence of 
constraints upon the problem at hand. During the early stages of the annealing 
process, the generator must generate steps that cover the entire region of interest 
nearly uniformly in order to maintain quasi-equilibrium. Many of the generat- 
ed steps are infeasible (especially for large N), and the step generation process 
becomes unworkably inefficient. Furthermore, discarding infeasible steps makes 
the generator asymmetric: consider the situation depicted in Figure 10. Because the 
probability of generating an infeasible trial point from base point x is not equal to 
the probability of generating an infeasible trial point from base point z, the renor- 
malization of g associated with rejecting infeasible trial points causes g(x, z; 9 )  to 
be unequal to g(z, x; 9) ,  As a result, the equilibrium densities become dependent 
upon the generator: near constraints, the occupation densities are lower than those 
given by the expression in equation (4). This effect is even more pronounced in 
multidimensional "comers". As a result both the efficiency of the algorithm and 
the probability of locating the global minimum can be reduced significantly. 

Instead of discarding an infeasible trial point, we use reflection to render the 
generated step feasible. This process of reflection maintains the symmetry of the 
generator because the probability of generating a step from base point x to an 
infeasible trial point y (that is then reflected to a feasible point z) is equal to the 
probability of generating a step from base point z to an infeasible trial point that is 
then reflected to x. Figure 10 depicts a situation in which an infeasible step s (with 
corresponding infeasible trial point y) has been generated from base point x. The 
reflection process is performed as follows: 

1. Determine the scalar w (0 < a; < 1) for which the point x + ~s lies on the 
constraint q(x) = 0. For nonlinear constraints, ~v is estimated using an iterative 
root-finding algorithm (the existence of a bracket ensures robustness). If y 
violates more than one constraint, reflection is performed about the constraint 
for which ~ is smallest. 
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2. Evaluate u = Vq, the gradient of the constraint at x + cvs. The scalar C for 
which y + ( C u  lies on the (linearized) constraint is then evaluated according 
to 

s . u  
= - 1) uCu" (44) 

Here C is the provisional metric, i.e. the covmance matrix of the archives. 
3. Reflect the step from the constraint by adding 2CCu to y, yielding the new 

trial point z. 
z = x + s + 2ffCu = y + 2(Cu. (45) 

The reflection process maintains generator symmetry for a single linear constraint 
and approximately does so for nonlinear constraints. Reflection is repeated until 
either a feasible trial point is located or a specified maximum number of reflections 
has been attempted, in which case reflection is aborted and a new random step is 
generated. 

2.3 .  THE ANNEALING SCHEDULE 

In this section the adaptive control of/3 is described. The ASA heuristic requires 
that the distance to equilibrium be kept below a user-specified value, say c, while 
/3 is raised. The maximum general rate of increase of/3 is an increasing function 
of e - that is,/3 can increase more rapidly if the process is to be allowed to stray 
further from equilibrium. The appropriate change in/3 after each examination, A/3, 
is then equal to the largest change that is consistent with keeping the distance to 
equilibrium below c. 

Consider an annealing process with occupation density pi(x) after examination 
i, that has been carried out with acceptance parameter/3; the distance to equilibrium 
is Di = D[pi, 7r(/3)]. By using equation (17), the value of 7 can be related directly 
to this distance: 

1 f 
[ 7r(x;/3)1(7- 1 ) A f l [ f ( x ) -  7(/3)] I dV= ~, ( 7 -  1)AflS(/3). (46) 
J~2 

ffthe acceptance parameter is raised to/3 + A/3 before examination i+  1, the distance 
to equilibrium is raised to D + = D[pi, 7r(/3 + A/3)]. According to equation (18), 
this distance is approximately given by 

1 fa  7r(x;/3)l~/A/3[f(x ) - 7 ( /3 ) ] [  dVx ~, 7A3S(3). (47) 

If one examination is performed with acceptance parameter 3 + A3, the distance 
to equilibrium is reduced by a factor of 1 - R: 

D +I -yzX3[l- R(3, (48) 

The value of A/3 that satisfies the ASA heuristic is the value for which Di+l = Di 
- i.e. the system is in a steady state - and D + = e. The value of "7 follows from 
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this steady-state condition, i.e. "7 = 1/R(fl, 9). With this, the requirement D + = e 
leads to the allowed change in r :  

eR(fl, el) (49) zx/  _ 

During the annealing process R and S are to be estimated statistically, so equation 
(49) completely determines the adaptive annealing schedule (without reference to 
the quadratic model). 

Recall that the sensitivity is given by equation (15): 

[ s ( f l )  = I f  - f l  �9 (50)  

The equilibration rate is relatively difficult to estimate accurately by using the form 
given in equation (13). Empirical results suggest that the expected change in the 
value of f when attempting a move from base point y, i.e. F(y;/3, ~t), is roughly 
proportional to f(y) - f(t3): 

F(y; fl, 9 ) ~  -r o2)[f(y)-  f(fl)]. (51) 

This property is quite intuitive: for base points y such that f(y) is higher than the 
mean value, the change in f is generally negative, and, conversely, when stepping 
from points where the value of the objective function is below the mean, the change 
in f is generally positive, and it turns out that F(y) is generally well approximated 
by the expression in equation (51). Equation (13) may now be rewritten: 

R(/3, ~2) ~ 1 - [1 - r 9)] fa 7r(y;fl)lf(y) - f(fl)l dVy 
fa 7r(y; 3)lf(Y) - 7(3)1 dVv 

= 9 ) .  ( 5 2 )  

That is, in order to estimate R, it is sufficient to determine the constant of propor- 
tionally between f(y) - f(fl) and F(y; r ,  9). In ASA, this is done by performing 
a linear least-squares fit between the values of F and f ( y ) .  f: 

r ~) ~ -[ / (Y) - 7(fl)][F(Y;3, 9)] 

[ f ( y ) -  7(/3)] 2 

If(Y) - f(fl)]  F ( Y ; f l , ~ P ) ] / [ f ( Y ) - 7 ( f l )  2 (53) 

: - L J J / L  
The division by cry essentially normalizes the values of F and f(y) - f ,  and thereby 
stabilizes these statistics against changes as fl increases. In terms of the parameter 
introduced in equation (36), the estimate of the equilibration rate used in ASA can 
be written as 

I R(fl, ~) ,~ - x F / a y / X  2 . (54) 
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Fig. 1 I. Approximate equilibration rate vs. relative step size for the quadratic. The thin 
curves represent the exact values of the equilibration rate shown in Figure 3. 

In principle, X 2 is equal to unity, but we have found it better not to assume this 
during the statistical estimation of R. Figure 11 shows this approximation to/~ for 
the quadratic: 

] ~ 2  

+---4- ~N+4 

r ( - ~ )  ( ~ ) 3 / 2  ( 4 )N+3 

.2/:7 + 4 (55> 

It tums out that, for values of # in the region of greatest interest (roughly 1 < # < 
3), the relative error of this approximation decreases as N increases. 

3. Implementation of ASA 

The conceptual foundation of ASA is now essentially complete. To this point, 
however, the calculation of the statistical averages that appear in equations such 
as equations (50) and (54) has not been addressed. These averages are an essential 
component of the proposed annealing schedule. Furthermore, there are modifica- 
tions to enhance the performance when the algorithm is to be run on a multipro- 
cessing system. 

3.1. STEP GENERATION FOR THE PARALLEL-PROCESSING CASE 

To this point, the generator has been adjusted to maximize the equilibration rate R. 
By definition, R is the equilibration rate "per examination"- that is, each time a trial 
point is examined, the distance to equilibrium is reduced by a factor of I - R. This 
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criterion for choosing the generator must be modified for the parallel-processing 
case, in which multiple examinations may occur during each iteration. Recall that, 
in the single-processor case,/3 is raised after each examination according to the 
expression in equation (49). The value of A/3 is chosen so that the distance moved 
along the equilibrium trajectory [i.e. S(/3)A/3] is roughly equal to the distance that 
the actual density would be moved in a steady state by the next examination. 

This simple picture suggests an appropriate generalization to the multiprocess- 
ing case: choose the step size to maximize the expected total distance moved per 
iteration. Given that A/3S(/3) = r is the distance moved along the trajectories per 
examination, the expected total distance moved per iteration using K processors, 
E[K], is given by 

E[K] (/3, ~,  c) = ER- (expected number of examinations per iteration) 
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TABLE I. Coefficients for fit of # ~  (N)  vs. K and N [see equation (58)] 

cij j = O  j = l  j = 2  j = 3  j = 4  j = 5  j = 6  

~ = 0  1 .85076  0.232638 0.0676955 0.0251900 -0.0106925 0.00143886 -6.98653e-5 
= 1 0 .120293 0.181110 0.0234745 0.0423060 -0.00777322 -9.86733e-4 1.47574e-4 

~= 2 -0.784101 -0.323338 -0.243144 0.531403 -0.538065 0.162461 -0.0152431 

~ = 3  -0.671876 4 .55783  -15.3263 12 .1604  -4.21906 0.933441 -0.0897940 

z = 4  3 .17938  -27.1617 94.0994 -84.8508 37.8704 -8.98941 0.835983 

~ = 5  -2.51663 50.8540 -170.304 159 .915  -75.9218 17.9218 -1.64737 

= 6 0.472807 -28.0532 91.9147 -87.8914 42.0015 -10.0425 0.918072 
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Expansion - 1 at optimal relative step size vs. dimensionality for the quadratic. 

= eR ~kg(1 - g)k-1 + K(1 - ~ - ) K - 1  

= ~--~-_R[1 - (1 - g)K]. (56) 
a 

It is proposed that appropriate values of p and ~ be determined by finding the value 

of # that maximizes this total distance for the quadratic,/)~q (#, e): 

Figure 12 is a generalization of Figure 4 and shows these optimal values of #, 
I~[ KI ( N'~ ' = . . . ,  opt~ j vs. N for K 1,2,4,  128. Evidently, the increase in the expect- 
ed number of examinations more than counters the decrease in the equilibration 
rate associated with the larger step sizes. Since these results will be used in the 

implementation of ASA, it is useful to fit an algebraic form to #opt ~lv ) vs. N: 

6 6 

#!K~(N) ~ ~ ~ cij(lnK)JN -i,  (58) 
i=0 j=O 
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where the coefficients cij are listed in Table I. The associated estimates for #o~ (N)  
are accurate to three significant figures for 1 <~ K <~ 128 and 1 <~ N ~< 75. (This 

[K] 
form is found to be invalid for K >> I00 - it turns out that, as K ~ ~ ,  #op~ (N)  
increases without bounds for both large and small N.) The resulting values of 
~, p and ~ that are used in ASA are then found by using equations (28), (30), 
and (41), respectively, and are shown in Figures 13, 14 and 15 as functions of N 
and K.  The value of the total relative distance moved (that is, the total distance 
moved, divided by e) along the trajectories per iteration at the optimal relative 

step s i z e , / ~ ' ] ( / ~  (N) ,  e ) /e ,  is shown in Figure 16. 9 According to this measure, 
diminishing returns are obtained by raising K (e,g., doubling K does not double 
/~). Also notice that the total relative distance moved per iteration is asymptotically 
proportional to N -  I. This result, combined with the asymptotic expression for S:v- 
given in equation (25), indicates that - according to equation (49) - the relative 
change in/3 per iteration for the quadratic is approximately proportional to c N  -3/2. 
That is, the number of iterations required to raise/3 by a given relative amount 
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is approximately proportional to N3/:/c, giving an indication of the scaling of 
computational effort with dimensionality for an objective function that is roughly 

quadratic. Finally, notice that aN (#~K~ (N))  is a monotonically decreasing function 

of K (for example, for K = 8, a is only about 0.2, meaning that about 80% of the 
examined trial points are rejected). Information from the rejected points, however, 
is used in the calculation of statistics: raising K allows the collection of generally 
more reliable statistics, and it is found in Section 4 that this advantage can more 
than offset the lack of a proportional increase in E.  

3.2. THE BOOST CHANGE FACTOR 

After each examination the boost factor is updated according to equation (43). 
An appropriate value for the boost change factor 8 can now be determined by 
first considering the quadratic model: if the acceptance parameter is raised by a 
factor of 1 + Aft//3, it is necessary to lower the absolute step size (r by a factor 
of (1 + A/3//3) 1/z in order to maintain the same relative step size # [see equation 
(22)]. The role of the boost factor ~ is analogous to the relative step size #, so 
it seems reasonable that, for a quadratic, 0 should be chosen to admit a similar 
relative change in ~: 

^ [K] 

O_n = [ L 1 + = 1 + 

1 + e/~N(# N , (59) 

where the approximation given in equation (25) has been used. Here,/~N may be 
approximated as in equation (55). An examination of a number of non-quadratic 
objective functions indicated that 0m is a suitable value for the boost change factor 
factor in general. Given that the boost factor is not necessarily changed at every 
examination - but only as required - it is unnecessary to specify the boost change 
factor accurately: a different value of the boost change factor can be accommodated 
automatically by adjustment of the frequency of the changes in the boost. 

3.3. ESTIMATION OF STATISTICS 

The modifications of/3 and ~ that follow each examination performed by the mas- 
ter processor depend upon the statistics of the earlier behavior. With the assumption 
of ergodicity, it is possible to identify the ensemble averages [e.g. f in equation 
(12)] with averages over many examinations in a single run. This averaging is 
complicated by the fact that the underlying conditions are changing. Since fixing 
/3 and q temporarily during annealing in order to determine more accurate statis- 
tics significantly reduces efficiency, the estimation process implemented in ASA 
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dynamically updates statistics by "folding" new data into the current statistics. For 
example, if ~ is an estimate of the mean of a quantity v, then a sample vi is folded 
into ~ as follows: 

+-- ~v~ + (1 - ~;)~, (60) 

where n is a folding factor of the form 

= 1 - e -1/~'. (61) 

The constant 7- is called the lifetime of the statistic. Statistics collected in this manner 
are simply weighted averages for which the weight decays exponentially. 

In choosing statistical lifetimes, both accuracy and responsiveness must be 
considered: longer life-times provide greater accuracy if the underlying conditions 
are changing slowly but give inadequate responsiveness under rapidly changing 
conditions. Therefore, the statistics in ASA are separated into three classes, and 
two of these classes have dynamic lifetimes: 

1. Long-lifetime statistics: -f , cr~ and S. At equilibrium, these statistics are inde- 
pendent of the generator and depend only upon/3. New data are folded into 
these statistics at every examination, and for maximum accuracy, the lifetime 
is made as long as possible while remaining consistent with the changing 
conditions. This long lifetime is denoted by v" and the corresponding folding 
factor is ~". In ASA, T" is generally about one quarter of the number of exam- 
inations necessary for/3 to increase by a factor of e. If the relative change in/3 
per examination, A/3//3, in constant and smaller than unity, then the number 
of examinations needed for/3 to increase by a factor of e, say c~, is given by 

( ~____~_~ ) /3 (62) c ~ = l / l n  1 +  ~ A----~" 

The long lifetime must be shorter than ce for the associated statistics to react 
adequately to changing conditions. Further, in order to provide stability, it is 
necessary to set a minimum value for the long lifetime, and this is found by 
analyzing the quadratic model: T~i n is set equal to one-quarter of the number 
examinations needed for/3 to increase by a factor of e for the quadratic, fi~: 

(N) N/2 
1^ 1 /3SN(/3) 1 \ ~ ] t t  

eRN(#opt(N)) ekN( .  ( N ) ) r  (63) 

^ [g] N where RN(#opt ( )) can be approximated by the relation given in equation 
(55). Therefore, v rr is updated in ASA after each iteration, as follows: 

T" <---max [T:in,1/ (4I-~--~ + rmi~]J~----~--I / ] . (64) 

This form for the long lifetime gives values that are, in general, roughly c~/4, 
I I  t t  

but are constrained to lie between Tmi n and 107mi n. 
2. Short-lifetime statistics: R, ~, and ~. The values of these statistics are not 

independent of the generator and involve an additional complication since 
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they are defined in terms of averages over the steps attempted from each base 
point. Since these short-lifetime statistics are updated only upon acceptance 
of a move, it is appropriate that the short lifetime be smaller than &' by about 
a factor of g. Further, when each sample is folded into the statistics, it is 
weighted in proportion to the total number of examinations, c, performed at 
that base point. 

In ASA, the short lifetime, written as r '  with associated folding factor n', 
is updated after each iteration as follows: 

l - -  , j  
r '  ~ max[r,~i,~, ar ]. (65) 

As before, the minimum value provides stability, and is determined from 
quadratic model statistics: 

T m i  n = hN(t.t N i,~. ( 6 6 )  

The collection of the short-lifetime statistics is less straightforward than the 
collection of the long-lifetime statistics. For example, the mean acceptance 
is estimated as follows: 

(c[~]) 
g ~ (c---y-' (67) 

where [~] represents an estimate of ~(xb). Here, [~] is taken to be the mean 
acceptance probability of the s steps generated from the current base point 
(recall that, at each iteration, K steps are generated, so s is an integer multiple 
of K): 

- ak. ( 68 )  [a] = * 

The expected value of the estimate in equation (67) is close to g provided 
that the value of the short lifetime is larger compared to the mean number of 
examinations between accepted moves (i.e. g r '  >> 1). The prescription for 
choosing r '  generally ensures that this condition is met. 

Since the averages involved in the least-squares fits that lead to equations 
(39) and (54) are not ensemble averages, the weights are chosen according to 
the accuracy of each data point, and R and ~/are estimated by 

R ,~ -xF/~r]  ,~ (*x[F]/a]) (69) 
x--: Ox 2) 

and 

OxEa])O) - Ox)(4a]) 1 _ ,~ ] ( 70 )  
- 2 0 [ @ 0 x  2)  ' 

where [F] represents an estimate of F(xb): [F] is taken to be the average of 
the product of the acceptance probabilities and the corresponding changes in 
f over t h e ,  steps generated from the current base point, and is given by 

1 
ak(ft,k -- f~). (71) [r] = 

k = l  
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Since [El and [F] represent averages calculated for s steps generated from the 
current base point, they are called local aggregates. 
The values of the short-lifetime statistics proper (written with single angle 
brackets) are updated only upon acceptance of a move; between accepted 
moves, estimates of these statistics, called provisional short-lifetime statistics 
and written with double angle brackets, are used to estimate R, 9, and ?7. In 
the notation of equation (60), these provisional statistics are updated before 
each examination, as follows: 

((v)) = g'vi + (1 - a ' )(v),  (72) 
so, for example, a provisional value of (c[5]) is given by 

((c[a])} = ~'c[a] + ( l  - t~')(c[a]). (73) 
The provisional statistics are then used to estimate R, ~, and ?7, as in equations 
(67), (69), and (70) above. In this way, the most recent estimates of [~], IF], 
f and cry can be used in the evaluation of X, R and ?7. On acceptance of a 
move, all of the provisional short-lifetime statistics are simply copied into the 
short-lifetime statistics proper and the local aggregates, s, and c are all reset 
to zero. 

3. Archive covariance matrix: C. All K trial points are examined during each 
iteration for archival of the corresponding steps. These examinations are 
performed separately from the examinations that determine the acceptance or 
rejection of the moves. As a result, it is possible for more than one step to 
be placed into the archives during a single iteration, thereby reducing the risk 
that the archives will become "outdated". An approximation to the covariance 
matrix of the archives is maintained for use during reflection. When a new step, 
say s, is added to the archives, C is updated as follows. First, the approximation 
to the mean of the archives, v is updated: 

v *-- ~=s+ (1 - t%)v, (74) 
and the archive covariance C is then updated according to 

C ~ t%(s - v)(s - v) T + (1 - t%)C. (75) 
Here the folding factor ~ is taken to be 1 - e -1/M. 

3.4. SUMMARY OF THE A S A  ALGORITHM 

The ASA algorithm can be summarized in detail as follows: 
1. Initialization: The generator parameters p, u, and ~7 are chosen according to 

equations (30), (33), and (41), respectively, using the appropriate values of 
[K] 

#opt (N)  [given in equation (58)]. The base point xb is initialized by choosing 
a random point from a uniform distribution over ft. The acceptance parameter 
/3 is set to 0 and the boost factor ~ is set to 1. The archives are initialized 
by generating M + 1 random points from a uniform distribution over ft and 
the differences between successive pairs of these points are placed into the 
archives. Initial values for the archive mean v and the archive covariance 
matrix C are then calculated. The long-lifetime statistics (7, ~r}, and S) are 
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. 

. 

. 

initialized by evaluating f at r~i  n points chosen from a uniform distribution 
over f~: 

I t  

- f j ,  
r~,., j=l 

S 

1 2 ) 
,-,- E #  - 7  [ r,~i,~ j=l 

try 

[The final approximation here follows from equation (25) and the remark 
following equation (37).] The short-lifetime statistics are initialized: 

( c ) :  1, ( e x ) = O ,  

( s ) = K ,  ( s x ) = O ,  (~x~-) : /~  ", ( 4 @ : K ,  (~x [~ ] )=o ,  

@x[r]l<rs) = -KRm(V~?(N)), 
and the local aggregates, s, and c are initialized: 

s :O,  c=O, [,~]=0, [ r ] :O .  
[Although, in principle, the initial equilibration rate is unity, the conservative 

,5 , [K] (N))  from the quadratic model gives greater stability at the value of Z~ N ~,]d op t 

outset.] 
Generation, reflection, and evaluation: The master processor sends the cur- 
rent base point and function value Xb and fb, boost  factor ~, and acceptance 
parameter/3 to each of the K peripheral processors. Each peripheral proces- 
sor generates an independent step sk according to equation (34) and adds it 
to the current base point xb to form a trial point xt,k. If xt,k is infeasible, sk is 
reflected. Each peripheral processor then returns the new trial point, function 
value, and acceptance probability to the master processor. 
Examination, statistics processing, and parameter updating: The master pro- 
cessor processes the trial points, function values and acceptance probabilities 
from the K peripheral processors as outlined in the pseudo-code listed in 
Figure 17. 
Termination criterion check: If the (user-specified) termination criterion is not 
satisfied, return to step 2. 

4. Examples 

In this section the results of testing ASA on two objective functions are presented. 
A figure of merit is defined which measures the efficiency of the ASA algorithm as 
a function of the annealing rate parameter e, and the number of parallel processors 
K. 

4.1. MEASURING EFFICIENCY 

A generally useful measure of efficiency is difficult to define for global optimization 
algorithms. First, there is a variety of possible definitions of success in a given run. 
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for k , -  2 to K do begin 

Update local aggregates and s: 

[a] , -  ([a] s + a~ ) / ( s  + 1), [ F ] ~ - ' ( [ F l s + a k ( f t , k - f b ) ) / ( s + l ) ,  s ~ - s + 2  
Examine trial point for archival: 

if Random[O, 1] < ak then send ~t,k and ~ to each peripheral processor for archival 

end for 

acceptedOne ~-- fa lse  

k * - I  

while (k < K)  and (acveptedOne = false) do begin 

Update long-lifetime statistics: 

? , - -  ~ " h  + (2 - ~")7,  ~ ,-- ~ " ( h -  Y)~ + 0 - ~" )~ , ,  
s , -  ~ " l f b  - 71 + (2 - , , " ) s  

Calculate provisional short-lifetime statistics: 

x ~ ( h  - Y ) / ~ I ,  ~ ~ ~ + 2, 

( (c ) )  ~ -  ~ ' c  + C 1 - t d ) ( c ) ,  ( (c [5 ] ) )  ~-- Ir -I- (2 - -  ~ ' ) ( c [ 5 ] ) ,  

((s)) , -  ,, 's + (2 - , , ' ) (s) ,  ( ( sx ) )  ,-- , e s x  + (1 - , , ' ) ( sx ) ,  

((sx2)) , -  , e s x  2 + (1 - ~')(sx~), ((sial)) , - -  ~ 's Ia l  + (1 - ,e)(s[~]), 
( ( s x [ 5 ] ) )  ~ ~'sx[5 ] + (2 - ~ ' ) ( s x [ 5 ] )  , 
( ( s x [F l l a  y) ) 4-- Ir s x [F ] t a  ! + (1 - -  t r  l, ) 
Calculate estimates of-d, R, and 71: 

, -  ((cIa]))  / ( (c)) ,  R ,-- - ( ( s x I F ] / o A )  1 ( ( sx~) ) ,  

,7 ~ { ((s))((sx[a])) - ((~x))((s[a])) } / { ((sIa]))((sx2)) } 
EiTA~ miT~ e mo~e."  

if Random[0, 2] < ak then 

Accept move: 

Xb *-" s fb ~'- ft,k, acceptedOne *- t r u e  

Copy provisional short-lifetime statistics into short-lifetime statistics proper: 

(c) ,-- ((c)), (cIa]) ,-- ((~[a])), ( s ) , -  ((s)), (sx) ,--- ( (sx)) ,  (sx 2) , -  ((sx2)), 
(sial) ~-  ((sial)),  (sxla]) *-  ((sx[a])) ,  ( s x [ F ] / o ~ )  , -  ( ( ~ x [ F ] / ~ f ) )  

Reset local aggregates, s, and c: 

s,--O, c+-O, [5] 4 -0 ,  [F] *--0 

end if 

Update 1~ anti 4: 

A~  ~- eR/ 8 

~ . - - Z + A Z  

if ~/< O.8~N(p[oK)(N)) then e ~-- ~ 

k~ . . - k+l  

end while 

Update z', r", ~', and ~" : 

r "  * -  max [ r~, . ,  a / (4IZ~/~I  + 0 .2 / r" , . ) ] ,  

r '  ,-- max(r~in,  -dr"), ~' ~-- 1 -- e -1 / r '  

else i f~  > ~N(p[o~(N))/0.8 then ~ ~--~/8 

x"  ~ I - e - I / v ' '  

Fig. 17. Examinat ion,  statistics processing,  and parameter  updating. 
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For example, it might be said that the global minimum has been located if the point 
with the lowest function value encountered during annealing is sufficiently close 
to the global minimum in either location or objective function value. Alternatively, 
it might be said that the global minimum has been located if the final base point 
- or the lowest point encountered - is within the "basin" of the global minimum 
(that is, if a continuous path along - V f  from the final base point terminates at 
the global minimum). Another difficulty in defining efficiency stems from the fact 
that, generally speaking, the probability of success is a monotonically increasing 
function of the amount of computational effort applied to the problem. That is, 
by lowering the rate of increase of/~, the probability of success can generally 
be raised at the cost of more objective function evaluations. Parallel processing 
further complicates the definition of efficiency since it becomes necessary to ask 
whether the probability of success is greater for a single run of the annealing 
process using K processors or for two independent, simultaneous runs, each using 
K / 2 processors. 

In our definition of efficiency, it is assumed that the amount of time needed to 
perform each run of the annealing process is proportional to the number of iterations 
in that run. Recall that each iteration consists of the generation of a different random 
trial point from a common base point by each of 1( peripheral processors. If f f  
represents the total number of peripheral processors, lf(/K independent runs of 
the annealing process can be performed concurrently. Let A be the total number of 
iterations that can be performed in the available time. If ), is the mean number of 
iterations performed per run, then approximately A/A sets of l i ' /K simultaneous 
runs can be performed in that time. The total number of runs that may be performed, 
therefore, is approximately ( /I 'A)/(K),) .  Now let p: represent the probability of 
failure for a single run of the annealing process. The probability of failure in every 

one of the (~ 'A)/(K)~) runs is p -~A/(K~). Estimates of pf and )~ can be found by 
performing a number of runs with fixed values for the parameters e and K. For 
convenience, the measure of efficiency is expressed as the expected number of 
function evaluations - i.e. the particular value of KA, denoted g - necessary to 
reduce the probability of failure by a factor of e: 

-K)~ 
- )(ln'p~" (76) 

This analysis is valid whenever there are many  independent runs, i.e. whenever 
f fA >> K)~. Notice that g is independent of K; recall that, in fact, / (  may be 
unity in which case the single processor evaluates steps in sets of K during each 
iteration. This measure of efficiency is applied to the two test cases in the next 
section. 
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4.2. TEST CASES 

The results of the application of ASA to two test cases are given here. To our 
knowledge, these examples represent the only classes of non-trivial examples (i.e. 
the reported success probabilities were typically significantly less than 100%) 
from papers describing other annealing variants. Like many of those presented in 
other papers, these examples are contrived - to begin, the functions are roughly 
isotropic. 

In these examples, efficiency (~) is measured as a function of the annealing 
rate parameter c and the number of peripheral processors, K. In this manner, the 
trade-off between speed and success probability is demonstrated. The results are 
also compared with estimates of the efficiency of other algorithms. In all cases a 
run is considered successful if the lowest function value encountered is less than 
the second-lowest minimum, f**. Since, in practical applications, there is generally 
a reasonable a priori level for changes in the value of the objective function that 
are considered insignificant, we choose to terminate a run when af  falls below a 
prescribed minimum value, say cry. 

4.2.1. Example 1: Quartic function 

The first example is the ten dimensional quartic, from Styblinski and Tang [12] 

1 10 
f (x )  = ~ ~ ( x  4 - 16x 2 + 5xn). (77) 

n----1 

The region of interest is {f~ : - 5  ~< xn ~< 5, n = 1 , . . . ,  10). The value of f at the 
global minimum is f* ~ -78.3323, the value of f at the second-lowest minimum 
is f*~ ~ f* + 2.8, and the termination criterion is taken here to be cr~ = 0.5. 

This function is chosen to demonstrate the relationship between speed and 
probability of success as a function of annealing rate parameter and number of 
peripheral processors. ASA produced the results shown in Figure 18 (each point 
corresponds to 30 runs, and the grey line gives the number of failures in 30 runs). In 
each case, ~ is nearly constant over much of the range 10 -3 ~< ~ ~< 10-2: smaller 
values of e produce higher success probabilities but require greater numbers of 
function evaluations. It is encouraging that these two effects essentially cancel 
each other so that the efficiency is nearly independent of the only user-selectable 
parameter. 

The efficiency is generally best (i.e. ~ is lowest) for K greater than unity. 
The superior performance in these cases is due to the more accurate statistics that 
outweigh the lack of a proportional increase in the distance moved per iteration 
(see the discussion of Figure 16). Eventually, increasing K must result in poorer 
efficiency, but the turn-around point is bound to be problem-specific. These results 
indicate that gains in efficiency can be realized by simulating multiprocessing on 
a single-processor computer. 
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Fig. 18. Efficiency vs. annealing rate parameter for example function 1, K = 1, 2, 4, 8. (It is 
difficult to place meaningful error bars on the two points for which p f  is zero.) 

Styblinski and Tang [12] apply their Stochastic Approximation with Convolu- 
tion Smoothing (SAS) algorithm and the Fast Simulated Annealing (FSA) of Szu 
[13] to this problem. In three sets of runs using various cooling rates, FSA achieved 
efficiencies o f ~  ~ 94900 (pf = 27/30, 3~ ~ 10000), ~ ~ 295000 (py = 29/30, 
)~ ,,~ 10000), and ~ ~ 280000 (pf = 7/10, )~ ~ 100000). The FSA variant lacks 
adaptivity and involves two problem-specific parameters that must be hand-picked: 
one relates to the annealing schedule and the other fixes the generator - the char- 
acteristic length of the generated steps is proportional to T. Further, FSA is not 
invariant under linear coordinate transforms and the principal axes of the generator 
are arbitrarily aligned with the coordinate axes. This particular objective function 
is roughly isotropic, so the associated best-case results do not expose FSA's weak- 
nesses; nevertheless, ASA is more efficient than the best-case results reported for 
FSA on this example. 

On the face of the reported results, SAS achieves a significantly superior effi- 
ciency o f ~  ~ 7570 (pf = 8/30, A ~ 10000) on this particular problem. Although 
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this result appears to be significantly better, it should be noted that SAS is not only 
starting-point dependent, but also requires a user-specified series of values for its 
convolution parameter - that is, there is a large hidden cost in the computation for 
optimally adjusting all of the control parameters by trial and error. Furthermore, 
SAS is not invariant under linear coordinate transformations and the assumptions 
underlying the design of SAS mean that it is only well-suited to problems such 
as this one, in which the smoothed approximation to the objective function has a 
minimum that is relatively close to the true global minimum. Keep in mind that, 
for a unimodal function, all of these algorithms will be soundly outperformed by 
any simple "downhilling" algorithm. 

4.2.2. Example 2: "Hartman"  function 

The second example is the function "F5" from Vanderbilt and Louie [14] (the 
"Hartman" function (N = 6) from Dixon and SzegO [4]): 

4 (6  ) 
f (x )  = - ~ c/exp - ~ ai,~(xn - pin)2 

i=1 n = l  

where e = (1, 1.2, 3, 3.2), 

10.00 3.00 17.00 3.50 1.70 8.00 / 
A = 0.05 10.00 17.00 0.10 8.00 14.00 

3.00 3.50 1.70 10.00 17.00 8.00 ' 
17.00 8.00 0.05 10.00 0.10 14.00 

0.1312 0.1696 0.5569 0.0124 0.8283 0 .5886)  
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

P -- 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 " 
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

(78) 

(79) 

The region of interest is {f~ : 0 ~< xn <~ 1,n = 1 , . . . , 6 ) .  The value o f f  at 
the global minimum is f* ~ -3.322359,  the value of f at the second-lowest 
min imum is f** ~ f* + 0.115, and the termination criterion is here taken to be 
or7 = 0.1. Notice that, as with many of the standard test functions, the valleys here 
are artificially aligned with the coordinate axes. 

In Vanderbilt and Louie [14], the global minimum is located 62 times in 100 
runs (p f  = 0.38), using an average of A = 1914 function evaluations, yielding an 
efficiency rating of ~ ~ 1980. The variant of annealing employed there requires the 
specification of both an initial value for the acceptance parameter T (temperature) 
and the rate of reduction of T, 

In six sets of 100 runs, ASA obtained the results given in Table II. For purposes 
of comparison the annealing rate parameter e was chosen to produce roughly the 
same number of function evaluations as in Vanderbilt and Louie [14]. It turns out 
that this problem is poorly suited to algorithms like simulated annealing: generally, 
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TABLE II. Efficiency vs. K and e for example function 

1 3.00 x 10 -2 39/100 1790 4. 500 1900 4. 700 

1 4.00 x 10 -2 47/100 13904-440 18504.740 

2 3.00 x 10 -2 50/100 870 4- 240 2510 4- 920 

2 4.00 x 10 -2 38/100 770 -4- 240 1590 4. 630 

4 3.00 x 10 -2 51/100 4804- 160 2830-4- 1200 

4 4.00 x 10 -2 47/100 4004- 140 21104-920 

8 3.00 x 10 -2 38/100 3404. 100 2790-4- 1200 

8 4.00 x 10 -2 41/100 2804-90 25104- 1100 

A. E. W. JONES AND G. W. FORBES 

2 

the random walk wanders until the base point falls into one of the Gaussian pits 
and remains there until termination. Nevertheless, the efficiency rating g for ASA 
is comparable to the best-case results reported by Vanderbilt and Louie [14]. It is 
important to realize that ASA requires the specification of only one parameter - e 
- and that the acceptance parameter updating and step generation are completely 
adaptive. 

5. Conclusions 

With weak dependence on its single user-specified parameter, Adaptive Simulated 
Annealing successfully avoids the hidden costs of other annealing variants while 
achieving performance comparable to their best-case results. Through trials with 
practical problems, ASA has proven to be a robust and effective global optimization 
method, For example, we have applied ASA to optimization problems in lens 
system design [6, 7]. In these problems, inequality constraints (both linear and 
nonlinear) are of central importance and the choice of nonlinear transformations 
upon the variable space can significantly affect efficiency. ASA has been able to 
locate solutions to some problems that are superior to the best systems obtained by 
conventional computer-aided design methods. 

A number of options for further refinement of ASA remain to be explored. 
For example, the implementation of the "smooth" acceptor a(y, x;/3) = [1 + 
exp{/3[f(y) - f(x)]}] -1 might be considered. Analysis of the quadratic suggests 

that, for large K, this acceptor produces larger values o f / ~ N ( # ~ ( N ) , e ) / e  than 
those produced by the canonical acceptor. Another possible refinement to con- 
sider is the introduction of adaptive nonlinear transformations. Although ASA is 
invariant under linear coordinate and objective function transformations, nonlin- 
ear transformations may be used to raise efficiency. It is, of course, possible to 
applyfixed nonlinear transformations to any problem as the ASA algorithm stands; 
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further gains in efficiency, however, might be possible by adaptive modification of 
the nonlinear transformations after each run. 

We expect the practicality of algorithms like ASA to blossom. Although the 
exploration of the performance of ASA to date has been limited chiefly by hardware 
speed (e.g., the computations for Example 1 required about a month of computer 
time on an eight-processor system of Inmos T800 Transputers), the continuing 
increases in affordable computing power - including parallel processing - will 
facilitate algorithm development. With faster computers, it will be possible to 
examine ASA's efficiency for problems of interest and to find empirically the opti- 
mal values of M, z/, 0, and the product pu, and thereby to determine the validity 
of the general application of the results from the quadratic model. Exploration of 
alternative schemes for controlling/3 and ~ would permit more direct validation 
of our heuristic. With its adaptivity coupled with invariance under linear transfor- 
mations, ASA provides a sound framework for meeting the challenges posed by a 
variety of practical global optimization problems. 

A. Appendix 

The equilibration rate for the N-dimensional quadratic is written as RN, and is 
found to satisfy 

1 fl) fN(Y) fN(fl) / ~ N ( / 3 , # )  : 1 5:N(fl) /ft #N(Y; 

+ fl2 e--13max(]N(X)--fN(y)'o) 

�9 [ I N ( X ) -  ]N(y)]g(y,x;#)dV~ dVy. (80) 

As described in Section 2.2.1, this can be reduced to a one-dimensional integral 
that can readily be evaluated numerically: 

RN(#) = 1 - vN-Ir -v2 -- -~ + [?N(V) dv. (81) 

For odd N, -f'N(V) is given by 

2 - X  
FN(V) = X ( 1 -  x ) N / 2 { ' ~  

\ v 'X /  
#2 N 1  

N--3 

N m=0 
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x [(1--X)N~2 ~-m-111~+1~ #2 J '  

and, for even N, it satisfies 

(82) 

F N ( V )  = X ( 1 -  x)N/2eXv2 [ N  - ( 2 -  X)v2] 

2 2 ~-~ _ ~ -- # -2Nv / .2 z-..~(ra+ l)[(1-X)-~-l]Im+-~+t \ .2  J '  "t- --~ e 
rn,=O 

(83) 

where X = #2/(#2 + N) and I~ is the Modified Bessel function of order m. 

Notes 

1 A similar method was developed by Pincus [10] for the analytic solution of global optimization 
problems. 

2 Other acceptors may be chosen: e.g., a(y, x;/3) = [1 + exp{/3 [f(y) - f(x)] }]-1. The canonical 
form is adopted here. 

3 In the theory of Markov processes, rr is often called the invariant distribution; see Feller ([5], 
pp. 392-399). 

4 Strictly speaking, it is also necessary that the generator and the region of interest are chosen so 
that the problem is irreducible: for finite/3, each point in ~2 must be reachable in a finite number of 
iterations from all other points in f~. 

5 Under detailed balance, the "flow" of occupation density at equilibrium from x to y,_r(x) a (y, x;/3) 
g(y, x; ~) ,  equals the flow from y to x, r__(y)a(x, y;/3)g(x, y; ~) ,  for all x and y in f~. The integrand in 
equation (3) then vanishes identically and, since the generator is symmetric, this result leads directly 
to equation (4). 

6 This scheme is similar to the "high-temperature mode" of the parallel-processing annealing 
scheme devised for circuit layout (combinatorial optimization) by Roussel-Ragot and Dreyfus 
[11]. 

7 Other "distance" measures are possible. The measure proposed here is invariant under linear 
coordinate transformations and, loosely speaking, gives the proportion of the occupation density that 
is "out of place". 

8 The factor of N appearing in equation (22) has been included for convenience - it turns out 
that the statistics for the quadratic can be plotted more clearly if # is defined as x/-Na/a~ instead of 
simply ~r#r~. 

9 In Figures 12-16, the statistics for K --- 1 are those of the single-processing case, since 
/~1 (#, e) /e  is just/~N(#). 
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